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1 Introduction

Seiberg duality [1] plays an important role for understanding phase structures of N = 1

supersymmetric gauge theories in four dimensions. Although an N = 1 theory and its

Seiberg dual theory are not equivalent, the dual theory describes the same infrared physics

as that of the original theory. For example, in N = 1 supersymmetric QCD (SQCD) in

conformal window (3Nc/2 ≤ Nf ≤ 3Nc), the Seiberg duality implies the existence of a non-

trivial infrared fixed point, where an interacting superconformal field theory is realized [1]

(see [2] for a review). The original and dual theories flow to the same infrared fixed point.

On the other hand, some N = 2 superconformal gauge theories are known to have an

exact S-duality, which means that a strong gauge coupling region of a theory is equivalent

to a weak coupling region of another theory at any energy scale [3, 4], like Montonen-Olive

duality in the N = 4 supersymmetric gauge theory. Interestingly, it was proposed in [5]

that the Seiberg duality is associated with the S-duality in the N = 2 supersymmetric

gauge theory. By the mass deformation for the adjoint chiral multiplet, the S-dual pair of

N = 2 superconformal gauge theories flows to the N = 1 theories which are precisely a

Seiberg dual pair. (See [6–8] for related discussions.)

Recently, Gaiotto proposed a new chain of S-dualities in N = 2 superconformal quiver

gauge theories [9] and many related developments have been made [10–15]. The N = 2
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superconformal theories associated with the generalized quiver diagrams, which we will

explain later, are all equivalent, or S-dual to each other, if they have the same “genus” of

the quiver diagram and the same global symmetry. The theories where the gauge group

is SU(2)p are the simplest case. In this case, we can explicitly construct the Lagrangians

of all the generalized quiver gauge theories and their flavor symmetries are generically

SU(2)n.1 They form a large class of the quiver gauge theories, which is denoted as Tg,n,

where 3 − 3g = n − p, because they are proposed to realized on M5 branes wrapped on

genus g Riemann surface with n punctures.

In this paper, from the Gaiotto’s S-dualities in Tg,n, we propose a number of new

Seiberg dualities of N = 1 quiver gauge theories, which implies there are a large number

of new non-trivial N = 1 superconformal field theories. As one gauge group case in [5],

N = 2 superconformal quiver gauge theories Tg,n are expected to flow to infrared fixed

points, by the mass deformations for the adjoint chiral multiplets. This can be partially

verified by turning off the gauge couplings except one. In that case, the theory is nothing

but N = 1 SQCD with four flavors which flows to the non-trivial infrared fixed point.

In general, this deformation produces several quartic terms in the superpotential. In

the ultraviolet, these are irrelevant operators. However, they show non-trivial behavior

in the infrared: some combinations of these develop to exactly marginal operators, whose

coupling constants span a manifold of fixed points. It is generally difficult to identify the

exactly marginal operators. However, we can still count the (complex) dimension of the

manifold of the fixed points, that is the number of the exactly marginal operators by means

of the argument in [5]. It reveals that if we concentrate on the operators keeping the flavor

symmetry SU(2)n, the number of them is 2n and universal for the quiver gauge theories

obtained from Tg,n for fixed g and n.

We focus on the above-mentioned fact that the S-duality relates various different look-

ing N = 2 superconformal quiver gauge theories. We show that this property implies

interesting physics: many different looking N = 1 quiver gauge theories flow to the same

infrared fixed point, by the mass deformations of the S-dual family. As a result, we propose

new Seiberg dualities which relate a large number of N = 1 quiver gauge theories. For in-

stance, two quiver theories obtained from T1,2 theories are expected to be dual. One quiver

in this category is a slightly generalized theory of the one considered by Klebanov and

Witten [16], i.e., the quiver with a loop and two gauge groups. The S-dualities imply that

this theory is Seiberg dual to the other theory with a different quiver diagram. Notice that

the original generalized Klebanov-Witten theory is self-dual under the usual Seiberg dual-

ity on one gauge group. Therefore, it is very remarkable that the new Seiberg dual theory

describes the same infrared physics as that of the generalized Klebanov-Witten theory.

In order to verify our proposal, we give non-trivial consistency checks of these dualities.

The above counting of the exactly marginal operators could be strong evidence: recall that

it is universal for fixed g and n. Also, we show that the ’t Hooft anomaly matching holds

for all the theories obtained from Tg,n for fixed g and n, although we need a bit care in the

1 For some SU(N) generalized quiver gauge theories (N > 2), the Lagrangian description has not

been found.
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case with an enhanced global symmetry. Another non-trivial check of these dualities is the

matching of several operators. We will perform this in the quiver gauge theories obtained

from T1,2 theories mentioned above. We demonstrate that chiral operators match between

the generalized Klebanov-Witten theory and its dual. We also consider the matching of

non-linear relations for the chiral operators, i.e., the matching of the chiral ring, which

indicates that the matching of the classical moduli space.

The organization of this paper is as follows. After reviewing the S-dualities in N = 2

superconformal quiver gauge theories [9] in subsection 2.1, we then consider the deformation

to N = 1 in subsection 2.2. We will propose new Seiberg dualities among these theories.

Also, we check that the global anomalies match in these theories. In section 3, we analyze

exactly marginal operators in these theories. We will see that the number of the exactly

marginal operators is universal for the proposed Seiberg dual theories. In section 4, we

consider a simple model, whose quiver diagram is identical to the Klebanov-Witten theory,

and its dual. We will identify the operators in the dual theory, which correspond to the

operators in the generalized Klebanov-Witten theory. Section 5 is devoted to conclusion

and discussion.

2 N = 1 SCFTs from N = 2 SCFTs

2.1 N = 2 superconformal quiver gauge theories and S-dualities

A large class of N = 2 superconformal quiver gauge theories in four dimensions was con-

structed in [9]. In this paper, we mainly consider the theories with SU(2)p gauge group.

In this case, a class of N = 2 superconformal quivers is specified by the number of SU(2)

flavor symmetries, n, and “genus” of the quiver diagram, g = 1 + p−n
3 , which is denoted as

Tg,n. Since there exist many Lagrangian descriptions associated with a label (g, n), quivers

contained in Tg,n are various in shape. The different looking quivers with same g and n are

related by the S-duality. We will review this in this subsection.

Among these N = 2 superconformal gauge theories, the SU(2) gauge theory with

4 fundamental hypermultiplets, T0,4, is the simplest and important example. Since the

fundamental representation of SU(2) is pseudo-real, the flavor symmetry is SO(8). We

consider an SO(4) × SO(4) ≃ SU(2)4 subgroup of the SO(8) flavor symmetry according

to [9]. Motivated by this, we denote this theory as figure 1.

In order to construct the Lagrangian of this theory, we start with four free fundamental

hypermultiplets, which we will denote as T0,3. Let us denote these superfields by Qαai,

where three indices label fundamental representations of the different flavor SU(2)’s (α =

1, 2, a = 1, 2 and i = 1, 2). By gauging one of three SU(2) flavor symmetries, e.g., SU(2)

labeled by α, the superpotential can be written as

W = Qαai(εφ)αβεabεijQ
βbj . (2.1)

Now we introduce two copies of four free hypermultiplets to construct T0,4 theory. The

SU(2) gauge group can be obtained by gauging a diagonal part of two SU(2) symmetries

of different sets of four free hypermultiplets.

– 3 –
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Figure 1. The quiver diagram of SU(2) gauge theory with four fundamental hypermultiplets.

In order to consider the S-duality, we introduce the mass parameters associated with

SU(2)a,b,... flavor symmetries as ma,b,.... The S-duality of this theory is associated with

the triality of SO(8) which exchanges 8v, 8s and 8c representations of SO(8). Under the

SU(2)a × SU(2)b × SU(2)c × SU(2)d subgroup, they decompose as

8v = (2a ⊗ 2b) ⊕ (2c ⊗ 2d),

8s = (2a ⊗ 2c) ⊕ (2b ⊗ 2d),

8c = (2a ⊗ 2d) ⊕ (2b ⊗ 2c). (2.2)

Therefore, the S-duality permutes four SU(2) symmetries. The strongly coupled limits of

the original theory are S-dual to weakly coupled limits of the theory where SU(2) flavor

symmetries are permuted.

The generalization to the quiver gauge theory is straightforward. All possible super-

conformal quiver gauge theories with SU(2) gauge groups can be constructed from the

fundamental building block T0,3 by gauging some of the flavor symmetries. The gauging of

one SU(2) symmetry of T0,3 leads to two fundamental hypermultiplets, as seen above. By

gauging two SU(2) symmetries of T0,3, we obtain a bifundamental hypermultiplet which

has one SU(2) flavor symmetry. Let us denote a bifundamental hypermultiplet by Bα1α2i,

where i (= 1, 2) are the flavor indices and α1 and α2 label two gauged SU(2) respectively.

The superpotential of this bifundamental can be written as

W = Bα1α2i [(εφ1)α1β1
εα2β2

+ εα1β1
(εφ2)α2β2

]Bβ1β2jεij . (2.3)

Also, by gauging three SU(2) flavor symmetries, we obtain a trifundamental multiplet. If

we denote this multiplet by Tα1α2α3 , the superpotential is

W = Tα1α2α3 [(εφ1)α1β1
εα2β2

εα3β3
+ εα1β1

(εφ2)α2β2
εα3β3

+ εα1β1
εα2β2

(εφ3)α3β3
]T β1β2β3 .

(2.4)

In order to obtain a superconformal gauge theory where β-functions of the gauge couplings

vanish, each gauge factor has to couple effectively to four fundamental hypermultiplets.

This means that each SU(2) gauge group should be obtained by gauging of a diagonal

subgroup of two SU(2) flavor symmetries of T0,3’s. Collecting these pieces, we can construct

various N = 2 superconformal quiver gauge theories which have SU(2)p gauge group and

SU(2)n flavor symmetry. Corresponding quiver diagrams have genus g = 1+ p−n
3 . Applying

the S-duality of T0,4 to each gauge group, we have different quiver gauge theories in Tg,n.

(This procedure corresponds to s-t duality regarding the SU(2) gauge factor as a propagator

and T0,3 as a vertex.) Therefore, all the theories in Tg,n are related by the S-dualities.
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Figure 2. Two different quivers T1,2 which are related by the S-duality.

Figure 3. The enhanced flavor symmetry of T1,2. Both quivers have the USp(4) ∼= SO(5) flavor

symmetry.

In general, the global symmetry of Tg,n is SU(2)n ×SU(2)R ×U(1)R. However, in some

cases, the flavor symmetry of the gauge theory is further enhanced. A trivial case is, of

course, T0,4 where SU(2)4 is enhanced to SO(8). The simplest non-trivial case is T1,2, as

depicted in figure 2. The left quiver can be regarded as an SO(4) gauge theory with four

half-hypermultiplets transforming in 4. Since 4 is real, the flavor symmetry is enhanced to

USp(4). More concrete observation of the enhancement of the flavor symmetry, based on

SU(2) × SU(2) instead of SO(4), will be presented in appendix A.

The nontrivial S-dual theory of the above-mentioned one corresponds to the right

quiver in figure 2. The full flavor symmetry can be seen as follows: the right trifundamental

is charged under the right SU(2) gauge symmetry as 2⊗2 = 3⊕1. We can regard this as a

SO(3) vector and a singlet. Therefore, the trifundamental decomposes into a bifundamental

of the SU(2) × SO(3) gauge symmetry and a fundamental of SU(2). The latter is mixed

with the left fundamentals to form an SO(5) flavor symmetry (figure 3). This matches

with the symmetry of the original quiver. We will analyze these in the subsequent sections

more explicitly.

Another example is T2,0. In this case, we can see that the flavor symmetry is enhanced

to SO(2) as in figure 4.

Finally, we comment on punctured Riemann surfaces which play a role in the study

the N = 2 quiver gauge theories. In [9], it was pointed out that the space of the gauge

coupling constants of the theory is identified with the complex moduli space of the as-

sociated Riemann surface. The labels g and n of this family of SCFTs are precisely the

genus and the number of punctures of the corresponding Riemann surface. Let us consider

the schematic description of T0,4 for instance, which is associated with a sphere with four

punctures C0,4. The four SU(2) flavor symmetries of T0,4 correspond to four punctures on

the sphere C0,4. By the decoupling of the gauge coupling τ → i∞, we obtain two copies

– 5 –
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Figure 4. The enhanced flavor symmetry of T2,0. Both quivers have the SO(2) flavor symmetry. On

the left, upper and lower trifundamentals form a SO(2) vector. In the middle, each trifundamental

decomposes as 2 ⊗ 2 = 3 ⊕ 1, as the T1,2 case. It produces two fundamental chiral multiplets for

the center node (right). Thus, the flavor symmetry is SO(2).

Figure 5. Possible degeneration limits of a sphere with four punctures, which correspond to the

usual weak coupling limit and S-dual weak coupling descriptions.

of T0,3’s, each of which has an SU(2)3 flavor symmetry. This decoupling limit corresponds

to the degeneration limit of a sphere into two three punctured-spheres. Thus, T0,3 is the

building block for the quiver, associated with a sphere with three punctures C0,3. A de-

composition of a punctured surface Cg,n into C0,3’s corresponds to a weakly-coupled gauge

theory description of the SCFTs Tg,n as well.

We can also give a schematic explanation of the S-dualities. Let us introduce the mass

parameters for T0,4 theory associated with SU(2)a,b,... flavor symmetries. In this case, the

gauge coupling moduli space is now described by a sphere with four marked punctures.

Since the punctures are marked, we have three different degeneration limits of a sphere,

as in figure 5. This is precisely the S-duality which permutes four SU(2) symmetries. In

generic Tg,n, all the possible weak coupling S-dual descriptions correspond to the possible

degeneration limits of the Riemann surface Cg,n.

2.2 N = 1 superconformal quiver gauge theories

In what follows, we will consider the deformation of N = 2 superconformal quiver gauge

theories Tg,n to N = 1 by the mass terms for the adjoint N = 1 chiral multiplets in N = 2

vector multiplets.

Let us consider the T0,4 case, i.e., the SU(2) gauge theory with four fundamental

hypermultiplets. (For simplicity, we focus on the massless fundamental case.) With the

mass deformation, below the energy scale of the mass parameter we integrate out the

adjoint and the superpotential becomes W ∼ hQ4. In the ultraviolet, h is an irrelevant

coupling. However, it is, in the infrared, exactly marginal coupling in this N = 1 theory [5].

Indeed, the β-function for h is proportional to the one for the gauge coupling constant:

βh ∝ βg ∝ 1 + 2γ, (2.5)

– 6 –
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where γ is the anomalous dimension of Q. Thus, the solutions to βg = βh = 0 form one

complex dimensional manifold (fixed line) because γ is a function of g and h.

The existence of the fixed line can be convinced by considering h = 0, that is N = 1

SQCD with Nf = 2Nc, in which it was shown that a nontrivial infrared fixed point exists [1].

From N = 2 point of view, the gauge coupling constant in the ultraviolet region, which is

the exactly marginal coupling in T0,4 theory, parametrizes this N = 1 fixed line.

The T0,4 theory is self-dual in a sense that the S-duality does not change the quiver

diagram. Thus, we obtain a similar theory by the mass deformation [5]. This “dual” theory

also has a quartic coupling hD, whose value at the infrared fixed point is roughly the inverse

of that of the original coupling h, associated with the S-dual transformation of the gauge

coupling constant.

Things become more interesting when we consider higher g and n cases. As the T0,4

case above, N = 1 quiver gauge theories obtained from Tg,n by the mass deformation are

expected to flow to the superconformal fixed point. Furthermore, it leads to the higher

dimensional manifold of fixed points, which is associated with the fixed manifold of N = 2

superconformal theories Tg,n. Partial evidence of the superconformal fixed points can be

seen, as above, by taking h1,2,...,n = 0 and g1,2,...,n = 0 except for gi. In this case, the theory

reduces to N = 1 SQCD and we know the existence of the infrared fixed point.

Recall that the S-dualities relate many different looking quiver gauge theories in Tg,n.

Hence, we obtain many different looking N = 1 quiver gauge theories by the mass defor-

mation. These are supposed to describe the same infrared physics. Therefore, this implies

the existence of dualities among those N = 1 quiver gauge theories. Of course, it includes

the self-dual duality as the T0,4 case as well.

The easiest non-trivial check of the existence of the superconformal fixed points and

this Seiberg duality might be the ’t Hooft anomaly matching. For generic quivers obtained

from Tg,n where the enhancement of the flavor symmetry does not occur, the anomaly

matching is very simple. We perform this at the origin of the moduli space of vacua.

The global symmetry is SU(2)1 × SU(2)2 × . . . × SU(2)n × U(1)R. The SU(2)3i anomalies

(i = 1, . . . , n) vanish, because the fundamental representation of SU(2) are pseudo-real.

Also, the SU(2)i×U(1)2R anomalies are trivially zero. Next note that all the chiral multiplets

have the same U(1)R charge −1/2 and there exist the same number of such chiral superfields

for fixed n and g if we do not distinguish the SU(2) flavor and gauge indices. Note also

that the multiplets which have the SU(2)i flavor symmetry, which are T0,3, have the same

number of extra indices of SU(2)2. Therefore, SU(2)2i ×U(1)R, U(1)3R and U(1)R anomalies

are, respectively, the same for fixed n and g.

The non-trivial case is the quivers obtained from T1,2 where the global symmetries are

enhanced to USp(4)(∼= SO(5))×U(1)R. The left quiver of figure 3 has the chiral multiplets

in 4 of USp(4), while the right quiver of figure 3 has those in 5 of SO(5). Since these

representations are real, the USp(4)3 anomalies are zero for both sides. Also, since all the

chiral multiplets have the same U(1)R charge −1/2 as noted above, the matching of the

U(1)3R and U(1)R anomalies is trivial. Finally, note that in terms of USp(4), the quadratic

– 7 –
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Casimir of 5 is twice as that of 4. Therefore,

(USp(4))2U(1)R : 1 × 4 ×

(

−
1

2

)

= 2 × 2 ×

(

−
1

2

)

. (2.6)

This confirms that the anomalies of both theories match.

In the rest of this paper, we will devote to collect other non-trivial evidence of the

existence of the superconformal fixed points and the Seiberg dualities. In section 3, we will

consider exactly marginal operators in these N = 1 quiver gauge theories. In section 4,

we concentrate on a particular example: the generalized Klebanov-Witten theory and its

dual introduced above. We will see the matching of the chiral operators and the nonlinear

constraints on them.

3 Exactly marginal operators

In this section, we analyze exactly marginal operators in N = 1 quiver gauge theories with

generic quartic terms in the superpotential. First of all, we briefly review the argument of [5]

for the existence of the exactly marginal operators. Let us consider a supersymmetric gauge

theory with product gauge groups,
∏p

i=1 Gi, and chiral multiplets, φa, which is transformed

as a representation Ra(Gi) of the gauge group Gi. We consider a superpotential W =
∑

s hsW
(s)(φa), where each W (s) is a product of ds chiral superfields (s = 1, . . . ,m). As

in [5], at a superconformal fixed point, the scaling coefficients

Agi
= −

(

3C2(Gi) −
∑

a

T (Ra(Gi))(1 − γa)

)

, (3.1)

Ahs
= ds − 3 +

1

2

∑

a

γa
∂ ln W (s)

∂ ln φa
(3.2)

have to vanish [5]. Here C2(Gi) is the quadratic Casimir, T (Ra(Gi)) is the index of the

representation Ra(Gi) and γa is the anomalous dimension of the chiral superfield φa. The

derivative of the last term in (3.2) counts the number of φa in W (s). From these, in general,

we obtain p + m equations. However, some of the equations would be degenerate. Let us

denote the number of the linearly independent equations as q (≤ p + m). These impose

the q conditions on p + m coupling constants.2 Thus, we expect that there is p + m − q

dimensional space of the solutions to these equations. In other words, there will exist

p + m− q exactly marginal operators. We will simply assume there indeed exist p + m− q

exactly marginal operators in our application.

Now, we consider N = 1 supersymmetric quiver gauge theories associated with N = 2

superconformal quiver gauge theories Tg,n. In particular, we consider the theories where the

enhancement of the flavor symmetry does not occur. (We will analyze the theories with

enhanced flavor symmetries, after the general discussion.) These theories are obtained

2 Of course there may be relevant and irrelevant operators which make the equations insolvable. In this

case, we take these coupling vanish and reconsider the equations for the vanishing beta functions forgetting

these couplings.

– 8 –
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as follows. First of all, we focus on a particular node of quiver. For such a node, the

superpotential is

W =
1

2
m Trφ2 +

∑

s=1,2

hs Tr φXs, (3.3)

where φ is the adjoint chiral superfield of the node we are considering. The second term is

due to the superpotential of the N = 2 supersymmetric gauge theory. The couplings hs are

related with the gauge coupling g in the N = 2 theory. Each Xs is Q2 or B2 or T 2, where

Q, B, and T are fundamental, bifundamental, and trifundamental superfields, respectively,

as seen in the subsection 2.1. The trace is taken over the gauge indices of the node. All

the other indices of the gauge and flavor symmetries of (bi or tri)fundamentals are already

contracted as the superpotential is invariant under such symmetries. Integrating φ out,

we obtain

W = −
1

2m

(

h1 Tr X2
1 + h2 Tr X2

2 + 2h1h2 Tr X1X2

)

. (3.4)

For each node, we add the mass term for the adjoint chiral field and we have the su-

perpotential (3.4) after integrating out it. The resulting N = 1 supersymmetric gauge

theory will be superconformal at least if we tune the masses and the gauge coupling con-

stants. Actually, all beta functions vanish if γa = −1/2 and there will be exactly marginal

operators.

We then consider how many exactly marginal operators keeping the flavor symmetry

SU(2)n exist for this theory. Because γa = −1/2, only quartic superpotential can be

marginal. As we saw in subsection 2.1, each node couples to two different matter multiplets,

say P and R, each of which is two fundamentals or a bifundamental or a trifundamental. Let

X1 and X2 be products of P and R respectively. The generic quartic superpotential keeping

the flavor symmetry is a sum of the superpotential associated for each node, like (3.4),

W = H1P
4 + H2R

4 + H3P
2R2. (3.5)

Note that there is one independent quartic operator which is constructed from one field,

e.g. P 4 or R4 in (3.5)3 and in the sum of the superpotentials for the nodes, a H1 or H2-type

coupling can appear in the superpotentials for two or three adjacent nodes. However, we

need a bit care about the operator which is generated by two fields, like P 2R2 in (3.5).

Generically, there exists one such independent operator from two fields and, therefore, the

H3 type coupling appear only once in the superpotential at a node. In special cases, how-

ever, it is possible to construct two independent operators. For a moment, we assume that

the number of such independent operator is one and treat such cases after general argument.

In order to count the exactly marginal operators for the N = 1 theory, it is convenient

to consider the relations between scaling coefficients when the mass perturbation is turned

off. Let Ag̃ and Ahs
be the scaling coefficients of the gauge coupling constant and the

couplings hs before integrating out φ. We refer to the anomalous dimensions of P , R and

3 This fact is easily seen by noticing that the chiral field have three global or gauge SU(2) indices, let

us denote it Qa1,a2,a3 , and there is only one invariant under the three SU(2) constructed from four Q’s.
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Figure 6. A quiver including “small loop” which consists of two gauge groups and two tri(or

bi)fundamentals.

φ as γP , γR and γφ, respectively. In this case, the scaling coefficients for h1 and h2 are

Ah1
= 1

2(γφ + 2γP ) and Ah2
= 1

2(γφ + 2γR). In terms of these, Ag̃ can be written as

Ag̃ = −2(γφ + γP + γR) = −2(Ah1
+ Ah2

). (3.6)

Such relation is satisfied for each node.

Then, we return to consider the N = 1 supersymmetric quiver gauge theory with (3.5).

The scaling coefficients for H1, H2 and H3 can be evaluated as

AH1
= 1 +

(

Ah1
−

1

2
γφ

)

+

(

Ah1
−

1

2
γφ

)

= 1 + 2Ah1
− γφ,

AH2
= 1 + 2Ah2

− γφ,

AH3
= 1 + Ah1

+ Ah2
− γφ =

1

2
(AH1

+ AH2
). (3.7)

Also, by using (3.6), the scaling coefficient for the gauge coupling g for the node can be

calculated as

Ag = Ag̃ − 2(1 − γφ) = −2(Ah1
+ Ah2

+ 1 − γφ) = −(AH1
+ AH2

). (3.8)

Therefore, we see that two equations, (3.7) and (3.8), are redundant.

So far, we only considered a particular node. For each node, we can do the same

calculation as above. As we assumed above, the operator associated with the H3-type

coupling constant appears exactly one time for each node. Therefore, the number of the

dependent equations is 2 for each node and we conclude that the number of the exactly

marginal operator is 2p, where p is the total number of the nodes.

At this stage, let us analyze the validity of the assumption. We should be careful about

the counting of independent H3-type operators in the case where the quiver includes “small

loop”, which consists of two nodes and two bi(or tri)fundamentals as depicted in figure 6.

One might think that the H3-type operators from the upper node and that from the lower

node are the same. However, we can construct two independent H3-type operators in this

case. Therefore, there are two H3-type operators for two nodes of the small loop and the

conclusion in the previous paragraph is correct.

There is one more exceptional case which needs care. This is the quivers with the

leg ending by the small loop, as figure 7. Naive consideration leads to that the H3-type
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Figure 7. The quiver including a loop at the tip of quiver (left). As in figure 3, this quiver can be

seen as the right hand side, where 1 means one chiral multiplet.

operator for the right hand side node is the same as the H1- or H2-operator. It follows that

the number of the exactly marginal operators is reduced by one for such a loop. However,

this naive conclusion is wrong. Indeed, we can see this quiver as the right hand side quiver

in figure 7. In that, we have three different fields, a bifundamental chiral superfield of

SU(2)× SO(3), P , a fundamental chiral superfield for SU(2), q, and a chiral superfield, R.

Let γP , γq and γR be the anomalous dimensions of P , q and R. The scaling coefficients for

the gauge couplings are

Ag1
= −

(

2 + 2γR +
3

2
γP +

1

2
γq

)

, Ag2
= −2(1 + 2γP ), (3.9)

where g1 and g2 are the gauge couplings of the SU(2) and SO(3) groups. Also, the generic

quartic superpotential from these fields is schematically

W = λ1P
4 + λ2R

4 + λ3R
2P 2 + λ4q

2R2 + λ5q
2P 2. (3.10)

The scaling coefficients are

Aλ1
= 1 + 2γP , Aλ2

= 1 + 2γR, Aλ3
= 1 + γP + γR,

Aλ4
= 1 + γq + γR, Aλ5

= 1 + γq + γP . (3.11)

Among them, four constraints are redundant. Therefore, there are four exactly marginal

operators and it matches with the general rule above. We conclude that the number of

the exactly marginal operators are same for a class of theories which are Seiberg dual

each other.

We note that the Seiberg dual theory contains the gauge singlet, meson, for N = 1

SQCD and expect that there are theories with mesons for our cases. In the discussion

of [5], the theory containing the singlet meson was introduced and was expected to flow to

the infrared superconformal fixed point of N = 1 SQCD with the quartic superpotential.

In our case, the quartic superpotential for each node is

W =
H1

2
P 4 +

H2

2
R4 +

H3

2
P 2R2. (3.12)

(H1 and H2 type operators will appear in the superpotentials from different nodes.) We

can also introduce the theory with mesons which has the same chiral operators as follows:

W = N1P
2 + N2R

2 + N3PR −
1

2H1
N2

1 −
1

2H2
N2

2 −
1

2H3
N2

3 , (3.13)

– 11 –



J
H
E
P
0
9
(
2
0
0
9
)
0
8
6

where N1,2,3 are independent operators and, in P 2, R2 and PR, only the gauge indices

of the node we are considering are contracted. We expect them to flow to the infrared

superconformal fixed point of the theory with no meson (3.12), although there is no strong

evidence to support it. At least the chiral ring of the theory with mesons is the same as

the one without mesons.

We have counted the number of the exactly marginal operators keeping the flavor

symmetry SU(2)n. However, as seen in subsection 2.1, the flavor symmetry would be en-

hanced in some cases. The number of the exactly marginal operator keeping this enhanced

symmetry could be reduced. Let us consider these cases here. The first simple example

is the SU(2) gauge theory with four flavors (eight fundamental chiral multiplets) obtained

from T0,4, where the flavor symmetry is SO(8). As noted in subsection 2.2, the coupling

constant of a quartic term in the superpotential is a exactly marginal coupling and there is

one exactly marginal operator. Indeed, the independent quartic operator is unique in this

case and two conditions βg = βh = 0 are linearly dependent.

A nontrivial case is the quivers obtained from T1,2 in figure 3. As analyzed in sub-

section 2.1, these two quivers have the USp(4) ∼= SO(5) flavor symmetry. First of all, let

us consider the quiver associated with the left hand side in figure 3, which we will call

as “generalized” Klebanov-Witten theory in the following section. (The meaning of “gen-

eralized” will be soon clear.) As we will analyze in section 4, there are two independent

quartic operators: a bilinear of the mesonic operator and a baryonic one. Therefore, the

most generic superpotential is

W = h1JikJjlQ
µiQµjQνkQνl + h2εµνρσεijklQ

µiQνjQρkQσl. (3.14)

In this case, all the scaling coefficients are proportional to 1+2γQ, where Q is the anomalous

dimension of Q. Therefore, there are three exactly marginal operators keeping USp(4) in

this theory.4 On the other hand, the right hand side quiver in figure 3 has different matter

content. We will refer to this theory as dual theory in the following. This quiver is very

similar to the one in figure 7. Therefore, the counting of the exactly marginal operators is

straightforward and we obtain the same answer as the generalized Klebanov-Witten theory.

We also consider two quivers obtained from the T2,0 theories (figure 4), where the

flavor symmetry is enhanced to SO(2). There are six exactly marginal operators in both

two theories. (Note that if we keep the SU(2)n flavor symmetry, that is no flavor symmetry,

the number of the exactly marginal operators is nine. This is only case where the general

rule for the number is incorrect.)

Finally, we comment on the SU(N)p gauge group case. In the case where the La-

grangian descriptions are exist, e.g., Ap and Âp−1 theories [17–19], we can follow above

4 The reader may wonder that this counting is different from that in Klebanov-Witten theory [16]. This

is because Klebanov-Witten theory was obtained by a specific mass deformation from T1,2, where mass

parameters are chosen as m1 = −m2, as we will see explicitly in section 4. In that case, the first term

in (3.14) vanishes and the flavor symmetry is enhanced to SU(4). Hence, the number of the exactly marginal

operators is reduced to two. This matches with the result in [16]. This enhancement of the flavor symmetry

should be seen in the dual theory non-trivially although we have not find a mechanism yet.

– 12 –



J
H
E
P
0
9
(
2
0
0
9
)
0
8
6

argument. There are many exactly marginal operators.5 We expect that the theories flow

to non-trivial infrared fixed points.

4 Generalized Klebanov-Witten theory and its dual

In this section, we consider a simple example which leads to a non-trivial Seiberg duality

by the mass deformation. Since a theory with one gauge group does not have a non-trivial

S-duality which changes matter contents, we consider a theory with two gauge groups

SU(2) × SU(2). In particular, we consider a theory with genus one, which is specified by

the generalized quivers illustrated in figure 2. The claim is that when we consider the mass

deformation for each theory, the resulting theories are Seiberg dual.

In the following, we consider the mass deformation for each theory. From the quiver

illustrated in the left of figure 2, we obtain the N = 1 generalized Klebanov-Witten theory

as discussed in the previous section. The other quiver (the right in figure 2) leads to its dual

theory. We will see that the chiral rings of the resulting theories match non-trivially, e.g., a

non-linear constraint for the mesons from the F-term equation is dual to a classical trivial

constraint. Note that we analyze the classical chiral rings and classical moduli spaces.

Since for |M | ≫ Λ, the gauge group is generically broken to an abelian group for these

theories, no non-perturbative effect will appear unlike the mass deformed N = 1 SQCD

with Nf = Nc + 2 (in the dual description) [1]. Therefore, this matching can be regarded

as non-trivial evidence of the existence of the superconformal field theory and the Seiberg

dual. In subsection 4.1 and 4.2, we analyze the generalized Klebanov-Witten theory and

its dual respectively.

4.1 Generalized Klebanov-Witten theory

In this subsection, we analyze the classical chiral ring of the generalized Klebanov-Witten

theory, whose gauge group is SU(2)1 × SU(2)2 and the flavor symmetry is USp(4). The

superpotential of the N = 2 theory before the mass deformation is given by

W = Tr(B1φA1) + Tr(B2φA2) + Tr(A1φ̃B1) + Tr(A2φ̃B2), (4.1)

where A and B are bifundamental chiral superfields and φ (φ̃) is an adjoint chiral superfields

of SU(2)1 (SU(2)2). By adding the following mass term

W =
1

2
m1Trφ2 +

1

2
m2Trφ̃2, (4.2)

and integrating out the massive adjoint chiral superfields, we obtain

W =
1

8

(

1

m1
+

1

m2

)

JikJjlQ
µiQµjQνkQνl

−
1

2 · 4!

(

1

m1
−

1

m2

)

εµνρσεijklQ
µiQνjQρkQσl. (4.3)

5 We thank the referee for pointing out the mistakes in the previous version.
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SO(4) USp(4)
µ, ν, · · · i, j, · · ·

Qµi 4 4

(Wα)µν 6 1

Table 1. Matter contents of the generalized Klebanov-Witten theory. Wα is a field strength.

Here, for later convenience, we renamed the fields as

(A1, A2, B1, B2) → (Q1, Q2, Q3, Q4), (4.4)

and regard the gauge group as SO(4) instead of SU(2)1 × SU(2)2. We label the indices of

the gauge group SO(4) by µ, ν, · · · and that of the global USp(4) group by i, j, · · · . The

invariant tensor J is defined as

Jij =

(

0 1

−1 0

)

, J ij =

(

0 −1

1 0

)

, (4.5)

where −1,0,1 are 2× 2 matrices. For details about changing the notation from SU(2)1 ×

SU(2)2 to SO(4) and about integrating out the adjoint superfields, see appendix B. Matter

contents of this theory are summarized in table 1.

It is known that for the SO(4) gauge theory with the superpotential W = 0, the

independent operators in the chiral ring are [20]

M (ij) = QµiQµj , (4.6)

B =
1

4!
εµνρσεijklQ

µiQνjQρkQσl, (4.7)

h[ij]
α =

1

2
εµνρσ

(

QµiQνj −
1

4
(QµkQνlJlk)J

ij

)

Wα
ρσ, (4.8)

hα =
1

4
εµνρσJijQ

µiQνjWα
ρσ, (4.9)

H =
1

4
εµνρσW αµνWα

ρσ, (4.10)

S = TrW αWα. (4.11)

For later convenience, we have decomposed the operator QQW into h
[ij]
α and hα, which are

in the irreducible representations of the global USp(4) group.

Since we actually have a non-vanishing superpotential, we have to consider the equa-

tions of motion:

(m1 + m2)JikJjlQ
µjQνkQνl +

1

6
(m1 − m2)εµνρσεijklQ

νjQρkQσl = 0, (4.12)

which leads to non-trivial chiral ring relations. By multiplying QµmJni to the equations of

motion (4.12), we obtain

(m1 + m2)M
mjJjlM

ln = (m1 − m2)BJmn. (4.13)
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This is decomposed into the following irreducible representations of USp(4):

(m1 + m2)

[

M ijJjkM
kl −

1

4
(MmnJnpM

pqJqm) J il

]

= 0, (4.14)

(m1 + m2)M
ijJjkM

klJli = 4(m1 − m2)B. (4.15)

The first equations show non-linear constraints on the meson operator M ij, while the

second equation indicates that the baryon operator B is decomposed into the product of

the meson operator. Only when m1−m2 = 0, the baryon operator exists in the chiral ring.

Other non-linear constraints can be obtained by multiplying εµκλτεmnpqQ
κnQλpQτq

to the equations of motion. Using identities among invariant tensors like εµνρσεµκλτ =

δ
[ν
κ δρ

λδ
σ]
τ , we obtain a constraint

(m1 + m2)BJijM
jkJkm =

1

6
(m1 − m2)(cofM)im, (4.16)

where cofactor cofM of the matrix M is defined as

(cofM)im ≡ εijklεmnpqM
jnMkpM lq. (4.17)

Since the totally antisymmetric invariant tensor εijkl can be rewritten in terms of the

invariant tensor Jij as

εijkl = −Ji[jJkl], (4.18)

(4.17) can also be rewritten as

(cofM)im = 3JijM
jkJkm(JnpM

pqJqrM
rn) − 6JijM

jkJklM
lnJnpM

pqJqm. (4.19)

By using this identity together with (4.15), the constraint (4.16) becomes

4(m1 − m2)
2JijM

jkJklM
lnJnpM

pqJqm

−
[

2(m1 − m2)
2 − (m1 + m2)

2
]

JijM
jkJkm(JnpM

pqJqrM
rn) = 0. (4.20)

On the other hand, by multiplying Jri × JlsM
stJtu to (4.14), we obtain

(m1 + m2)

[

JriM
ijJjkM

klJlsM
stJtu −

1

4
(MmnJnpM

pqJqm) JrsM
stJtu

]

= 0. (4.21)

Comparing (4.20) and (4.21), we obtain the following two constraints:

JijM
jkJkm(JnpM

pqJqrM
rn) = 0, (4.22)

JqiM
ijJjkM

klJlmMmnJnp = 0, (4.23)

for generic masses. Since we are assuming that m1 6= 0, m2 6= 0 in order that we can

integrate out the adjoint field, (4.20) and (4.21) cannot be identical constraints. Only the

special case is m1 + m2 = 0, where the constraints (4.21) vanish and (4.20) becomes

JriM
ijJjkM

klJlsM
stJtu −

1

2
(MmnJnpM

pqJqm)JrsM
stJtu = 0. (4.24)
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If we impose the former constraints (4.22), the latter (4.23) can be derived from (4.21),

which originates in (4.14). Thus, the independent constraints for generic masses are (4.14)

and (4.22).

The usual classical constraints

B2 =
1

4!
detM (4.25)

can be derived from (4.15) and (4.16), and does not lead to a new constraint for the

meson operator.

In summary, when the masses are generic, the independent chiral operators are

M ij , h
[ij]
α , hα,H, S, and the non-linear constraints for the meson operator are

(MJM)ij −
1

4
Tr(MJMJ)J ij = 0, (4.26)

Tr(MJMJ)M ij = 0. (4.27)

Other non-linear constraints for operators including Wα also exist, but we do not analyze

them here.

4.2 Dual theory

In this subsection, we consider the dual of the generalized Klebanov-Witten theory, whose

generalized quiver is illustrated in figure 3.

The superpotential of this dual N = 2 theory before the mass deformation is given by

W = P a
b
ȧφb

cP
c
a
ḃε

ȧḃ
+ P a

b
ȧε

ȧḃ
φ̃ḃ

ċP
b
a
ċ + qȧ

Iεȧḃ
φ̃ḃ

ċq
ċ
I , (4.28)

where φ is the adjoint field of SU(2)1 and φ̃ is the adjoint field of SU(2)2. By adding the

following mass term

W =
1

2
m1Trφ2 +

1

2
m2Trφ̃2, (4.29)

and integrating out the massive adjoint fields, we obtain

W = −
1

2

(

1

m1
+

1

m2

)

P a
b
ȧP b

a
ḃε

ḃċ
P c

d
ċP d

c
ḋε

ḋȧ

−
1

m2
qȧ
I εȧḃP

a
b
ḃP b

a
ċεċḋq

ḋ
I −

1

2m2
qȧ
I εȧḃq

ḃ
Jqċ

Jεċḋq
ḋ
I . (4.30)

Matter contents of this mass deformed dual theory is summarized in table 2.

As discussed in appendix C, the independent generators of the chiral ring of this theory

for generic masses are

M̃IJ = qȧ
Iεȧḃ

qḃ
J , (4.31)

h̃I
α = qȧ

I ε
ȧḃ

P a
b
ḃ(Wα)ab, (4.32)

h̃α = P a
b
ȧε

ȧḃ
P b

c
ḃ(Wα)ca ∼ P a

b
ȧP b

a
ḃε

ḃċ
(wα)ċȧ, (4.33)

S1 = Tr W αWα, (4.34)

S2 = Tr wαwα, (4.35)
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SU(2) SU(2) SO(5)
a, b, · · · ȧ, ḃ, · · · I, J, · · ·

P a
b
ȧ 3 2 1

qȧ
I 1 2 5

Wα
a
b 3 1 1

wα
ȧ
ḃ

1 3 1

Table 2. Matter contents of the dual theory.

where we used the equations of motion:

−2

(

1

m1
+

1

m2

)

P b
a
ḃεḃċP

c
d
ċP d

c
ḋεḋȧ −

2

m2
qḃ
IεḃȧP

b
a
ċεċḋq

ḋ
I = 0, (4.36)

−
2

m2
ε
ȧḃ

P a
b
ḃP b

a
ċε

ċḋ
qḋ
I −

2

m2
ε
ȧḃ

qḃ
Jqċ

Jε
ċḋ

qḋ
I = 0. (4.37)

These operators match to those of the original theory as

M ij ∼ (ΓIJ)ikJ
kjM̃IJ , (4.38)

h[ij]
α ∼ h̃I

α(ΓI)ikJ
kj, (4.39)

hα ∼ h̃α, (4.40)

H,S ∼ S1, S2, (4.41)

where ΓI is the gamma matrices for the Spin(5) group, and chosen such that

(ΓI)(ikJ
|k|j) = 0, TrΓI = 0.

Certain linear combinations of S1 and S2 correspond to H and S, which cannot be deter-

mined from the global charge. Only when m1 + m2 = 0, an operator

P 4 = P a
b
ȧP b

a
ḃε

ḃċ
P c

d
ċP d

c
ḋε

ḋȧ
(4.42)

appears in the classical chiral ring. This operator is expected to correspond to the baryon

operator B of the generalized Klebanov-Witten theory. This matching of the operators in

the classical chiral ring gives a non-trivial consistency check to the duality.

We further investigate the non-linear constraints of the meson operator. From the

definition of the meson operator M̃IJ , we obtain non-linear constraints

M̃I[JM̃KL] = 0, (4.43)

which follow from the identity qb
[Jqc

Kqd
L] = 0, where the gauge indices of SU(2)1 run

a, b, c = 1, 2. This can also be rewritten as

εIJKLMM̃JKM̃LM = 0. (4.44)

Further non-linear constraints can be obtained from equations of motion (4.36) and (4.37).

By multiplying P c
d
ċP d

c
ḋ to the second equations of motion (4.37), and by using (C.20)
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and (C.21) in appendix C, which are also derived from the equations of motion, we finally

obtain

m1(M̃KLM̃LK)M̃IJ = 2(m1 + m2)M̃IKM̃KLM̃LJ . (4.45)

By multiplying M̃JK to (4.43), we find

(M̃KLM̃LK)M̃IJ = 2M̃IKM̃KLM̃LJ . (4.46)

Comparing (4.45) and (4.46), we obtain

(M̃KLM̃LK)M̃IJ = 0, (4.47)

M̃IKM̃KLM̃LJ = 0, (4.48)

for generic masses. If we impose the former constraint (4.47), the latter (4.48) can be

derived from (4.46), which originates in (4.44). Thus, independent constraints are (4.44)

and (4.47).

In summary, the non-linear constraints for the meson operator are

εIJKLMM̃JKM̃LM = 0, (4.49)

(TrM̃2)M̃IJ = 0. (4.50)

These are equivalent constraints as (4.26) and (4.27). This matching of the non-linear

constraints also indicates matching of the classical moduli space. This can be strong

evidence of the Seiberg duality.

5 Conclusion and discussion

In this paper, we have proposed a large number of new Seiberg dualities of N = 1 gener-

alized quiver gauge theories, which originate in the S-dualities of N = 2 superconformal

gauge theories proposed by [9]. By deforming N = 2 S-dual theories with adjoint mass

terms, they flow to the Seiberg dual theories, where N = 1 superconformal field theories

are realized. We have shown some evidence for the existence of such infrared fixed points

and the Seiberg dualities. We have found that for generic SU(2)n quiver gauge theories,

the numbers of the exactly marginal operators are 2n, which are universal for the pro-

posed Seiberg dual theories. We have checked that the ’t Hooft anomaly matching also

hold for the Seiberg dual theories. As a simple example, we have considered the generalized

Klebanov-Witten theory and its dual theory and demonstrated that chiral operators match

between these two theories. We have also shown the matching of non-linear constraints for

meson operators.

In this paper, we have concentrated on the generalized SU(2)p quiver gauge theories.

However, it is very interesting problem to generalize the gauge group to generic SU(N). It

would be possible to deform them to N = 1 (see [22] for related discussion) and discuss new

Seiberg dualities of SU(N) quiver gauge theories. This generalization is quite a non-trivial

task because the S-dualities of generic SU(N) gauge theory is totally different from that
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of SU(2) as discussed in [9]. For example, the S-dualities for SU(3) quiver gauge theories

are based on the Argyres-Seiberg duality [21], where the E6 superconformal field theory

appears, whose SU(2) subgroup is gauged. Since the explicit Lagrangian descriptions

for the S-dual theories are not known, corresponding deformation as our analysis is not

straightforward. It would also be interesting to generalize to N = 1 SO-USp quiver

gauge theories, by using the S-dualities in N = 2 superconformal SO-USp quiver theories

analyzed in [11].

For the SU(N) gauge group, there are N = 1 SCFTs [23, 24] which are obtained by

adding a superpotential TrΦN to the Argyres-Douglas N = 2 SCFT, even if there are no

flavors. We expect that non-trivial N = 1 SCFTs can also be obtained from the N = 2

SCFTs considered in [9] by adding a superpotential TrΦN . It will be interesting to study

properties of this type of SCFT.
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A Global symmetry of Â1 theory

A gauge theory corresponding to the left quiver diagram of figure 2 is known as the SU(2)×

SU(2) Â1 theory [18, 19]. We can generalize it to the SU(N) × SU(N) Â1 theory. This

SU(N) × SU(N) theory is precisely the theory on N D3 branes which probe the singular

point of C
2/Z2 ×C. The SU(N)× SU(N) Â1 theory possesses a global symmetry SU(2)×

SU(2) which rotates four bifundamental matters (N, N̄) and (N̄,N) respectively.

In this appendix, we show that the global symmetry of N = 2 Â1 theory is enhanced

to USp(4) when we set N = 2. Since this special case is our interest, the enhanced flavor

symmetry is important for our discussion.

Let us introduce vectors of the chiral fields A1, A2, B1 and B2 which are in the

bifundamental representation (2, 2̄) ≃ (2,2)

A =

(

A1

A2

)

, B =

(

B1

B2

)

. (A.1)

Here we omit indices of gauge groups. Then the superpotential of SU(2)×SU(2) Â1 theory

is given by

W = ǫ
α̇β̇

TAαα̇ · Bβ̇βφαβ + ǫαβ
TBβ̇β · Aαα̇φ̃

α̇β̇
. (A.2)

Here α and α̇ are the indices of the former and the latter SU(2) gauge factor. It is easy to

see that the adjoint fields φαβ = ǫβγφα
γ and φ̃

α̇β̇
= ǫ

β̇γ̇
φ̃γ̇

α̇ are symmetric matrices.
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Turning off the superpotential, the SU(2) × SU(2) Klebanov-Witten gauge theory has

a global symmetry U(4) which rotates the vector TQ = (TA, TB) as follows:

Q → UQ. (A.3)

In this appendix, we study the subgroup of the unitary group U(4) under which the super-

potential is maintained invariant. We represent an element of U(4) using 2× 2 matrices a,

b, c, and d as follows

U =

(

a b

c d

)

. (A.4)

It acts on Q as follows

A → aA + bB,

B → cA + dB.

Under the transformation, the first term of the superpotential becomes

ǫ
α̇β̇

TAαα̇ · Bβ̇βφαβ → ǫ
α̇β̇

(TAαα̇Ta + TBα̇αTb) · (cAββ̇ + dBβ̇β)φαβ

= ǫ
α̇β̇

TAαα̇(Tad − Tbc)Bβ̇βφαβ + ǫ
α̇β̇

TAαα̇(Tac)Aββ̇φαβ

+ ǫ
α̇β̇

TBα̇α(Tbd)Bβ̇βφαβ.

The invariance of the term implies the following constraints on the matrices

Tad − Tbc = 1, Tac = Tca, Tbd = Tdb. (A.5)

Notice that the property φαβ = φβα implies

ǫα̇β̇
TAαα̇MAββ̇φαβ = −ǫα̇β̇

TAαα̇TMAββ̇φαβ, (A.6)

for a general element M of GL(2, C). The same relation holds for B.

The second term ǫαβ
TBβ̇β · Aαα̇φ̃

α̇β̇
of the superpotential gives precisely

same constraints.

Thus the superpotential maintains the subgroup of U(4) whose elements satisfy the

following relation of 4 × 4 unitary matrix
(

a c

b d

)(

0 1

−1 0

)(

a b

c d

)

=

(

0 1

−1 0

)

. (A.7)

It means that the global symmetry of SU(2) × SU(2) Â1 theory is USp(4).

B Mass deformation of Â1 theory

In this section, we analyze the generalization of the Klebanov-Witten theory with a general

marginal superpotential as an electric side of the duality. We can generalize the SU(N) ×

SU(N) Klebanov-Witten theory by adding the following superpotential

W = hαβα̇β̇Tr(AαBα̇AβBβ̇). (B.1)
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Here A and B transform as (2,1) and (1,2) under the global SU(2) × SU(2). The trace

operation vanishes some terms of W . Then the remaining superpotential consists of ten

terms (1,1) ⊕ (3,3)

W = hǫαβǫα̇β̇Tr(AαBα̇AβB
β̇
) + h{αβ}{α̇β̇}Tr(AαBα̇AβB

β̇
). (B.2)

Thus this is the general form of the superpotential by symmetry argument. In this subsec-

tion, we specialize it to N = 2 and interpret it as a deformation of Â1 theory.

Since we consider the gauge group SU(2) × SU(2) throughout the paper, it is very

convenient to rewrite it in SO(4) notation. Let us introduce six generators I i=1,2,3, J j=1,2,3

of the gauge group SU(2) × SU(2) ≃ SO(4)

I i = (σ2 ⊗ 1, σ3 ⊗ σ2, σ1 ⊗ σ2), J j = (1 ⊗ σ2, σ2 ⊗ σ3, σ2 ⊗ σ1) (B.3)

We expand the adjoint field by using Pauli matrices as basis

φa
b = viσia

b, φ̃ȧ
ḃ
= wjσj ȧ

ḃ
. (B.4)

Then we can collect the SU(2) ⊂ SO(4) adjoint chiral fields φ and φ̃ in SO(4) (anti)self-dual

matrices V , W as follows:

V = I ivi =











0 −v1 −v2 −v3

v1 0 −v3 v2

v2 v3 0 −v1

v3 −v2 v1 0











, W = J jwj =











0 −w2 −w1 −w3

w2 0 w3 −w1

w1 −w3 0 −w2

w3 −w1 w2 0











. (B.5)

It is easy to see that these are 4×4 self-dual and antiself-dual antisymmetric matrices. We

can also represent an antisymmetric part of A1
a
ȧB1

ȧ
b+A2

a
ȧB2

ȧ
b and B1

ḃ
aA1

a
ȧ+B2

ḃ
aA2

a
ȧ

as self-dual and antiself-dual part of 4×4 antisymmetric matrix X. The matrix is given by

X
aȧbḃ

= ǫ
ȧḃ

(A1{a|ċ|B1
ċ
b} + A2{a|ċ|B2

ċ
b}) + ǫab(A1c{ȧB1ḃ}

c + A2c{ȧB2 ḃ}
c) in spinor indices.

We rewrite it by lowering the spinor indices of fields as

ǫ
ȧḃ

A{a|ċ|B
ċ
b} + ǫabAc{ȧBḃ}

c = −A{a[ȧBḃ]b} − A[a{ȧBḃ}b]

= −2(AaȧBḃb
− A

bḃ
Bȧa)

= −2(AµBν − AνBµ). (B.6)

Using this relation, we can write the matrix X explicitly by using the index of SO(4) vector

Xµν = −2(A1[µB1ν] + A2[µB2ν]). (B.7)

When we rename the fields as

(A1, A2, B1, B2) → (Q1, Q2, Q3, Q4), (B.8)

X can be rewritten as

Xµν = −2JijQµ
iQj

ν , (B.9)
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where i, j = 1, · · · , 4 are indices of the global USp(4) symmetry.

In this SO(4) notation, the superpotential for Â1 theory is

W Â1 =
1

4
tr (V X + WX). (B.10)

Here tr is the trace over 4 × 4 SO(4) indices µ, ν = 1, · · · , 4. Then we can deform the

theory by adding an N = 1 general mass term

W = W Â1 −
1

4
(m1 tr V 2 + m2 tr W 2) (B.11)

At low energy, the theory flows to an N = 1 superconformal fixed point, as discussed

above. The infrared theory is obtained by integrating out the massive chiral fields V , W .

W gKW =
1

16m1
tr (X · P SDX) +

1

16m2
tr (X · PASDX)

=
1

32

(

1

m1
+

1

m2

)

tr (X · (P SD + PASD)X)

+
1

32

(

1

m1
−

1

m2

)

tr (X · (P SD − PASD)X). (B.12)

where P (A)SD is the projector onto the (anti)self-dual part.

P SD
µνρσ + PASD

µνρσ =
1

2
(δµρδνσ − δµσδνρ),

P SD
µνρσ − PASD

µνρσ =
1

2
ǫµνρσ.

By substituting these explicit forms of the projectors, we obtain the superpotential of the

generalized Klebanov-Witten theory

W gKW =
1

32

(

1

m1
+

1

m2

)

XµνXµν +
1

64

(

1

m1
−

1

m2

)

ǫµνρσXµνXρσ . (B.13)

Here the first term is the superpotential of the Klebanov-Witten theory. This term pre-

serves the SU(4) global symmetry because of their determinant representation in the next

subsection. A generic mass deformation induces the second term which maintains only the

original USp(4) symmetry. By substituting (B.9) into (B.13), we obtain the superpoten-

tial (4.3) appeared in section 4.1.

C Chiral operators in the dual theory

In this appendix, we identify the independent operators in the chiral ring of the dual theory

of generalized Klebanov-Witten theory. Generally speaking, when we consider chiral rings

of a supersymmetric gauge theory, we have to take into account that chiral ring relations

for the gauge field strength Wα ∝ D̄α̇D̄α̇[e−V DαeV ] and other chiral superfields φ with

arbitrary representation R are given by

Wα
A(TR

A)abφ
b ∝ D̄α̇D̄α̇

[

e−V Dα(eV φ)
]

∼ 0. (C.1)
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Here, Dα, D̄α̇ is a super covariant derivative, V is a vector superfield, and TR is a generator

of the gauge group in the representation R. This relation is also applicable for a product

gauge group, in which case TR
A should be replaced by generators of the product gauge

group Tr1

A1 ⊗ 1 and 1 ⊗ Tr2

A2 .

Writing the relation (C.1) explicitly for each field P , q, Wα, wα in our model by using

the discussion above, we obtain

(wα)ȧḃq
ḃ
I ∼ 0, (C.2)

(Wα)abP
b
c
ȧ − P a

b
ȧ(Wα)bc + (wα)ȧḃP

a
c
ḃ ∼ 0, (C.3)

{Wα,Wβ} ∼ 0, (C.4)

{wα, wβ} ∼ 0. (C.5)

First, we consider the operators invariant under the first gauge group SU(2)1 but not

necessarily invariant under the second gauge group SU(2)2. The fields P and Wα are in

the adjoint representation of the first group. A product of three adjoint fields X = σiXi,

Y = σiY i, Z = σiZi of SU(2)1 gauge group can be rewritten as

Xa
bY

b
cZ

c
d = −i(εijkX

iY jZk) δa
d + Tr(Y Z)Xa

d − Tr(ZX)Y a
d + Tr(XY )Za

d, (C.6)

where “Tr” is the trace of SU(2)1. It indicates that a trace operator with more than three

adjoint fields decomposes. Thus, candidates of the independent chiral operators which are

invariant under the first gauge group SU(2)1 are the trace operator with two or three fields

because trace of a single adjoint field vanishes. In the following, we discuss that trace

operators with three adjoint fields P or W vanish or reduce to trace operators with two

adjoint superfields. When we apply the equality (C.6) for the field P a
b
ȧ, the first term

vanishes because the remaining index run only ȧ = 1, 2, and thus, TrP 3 decomposes into

TrP 2 × TrP and vanishes. When we multiply P c
a
ċ to the chiral ring relation (C.3), and

taking into account the symmetry of the indices, we obtain

2(Wα)abP
b
c
ȧP c

a
ċ = −(wα)ȧḃP

a
c
ḃP c

a
ċ. (C.7)

Thus, TrWP 2 reduces to TrP 2. By using (C.4) and by taking into account the symmetry

of the SU(2)1 indices, we obtain

(Wα)ab(Wβ)bc ∼
1

4
εαβδa

b(TrW γWγ). (C.8)

Thus, TrW 2P decomposes to the product of the glueball TrW 2 and TrP , which vanishes.

Similarly, TrW 3 decomposes to the product of TrW 2 and TrW .

From the discussion above, the independent chiral operators invariant under the first

gauge group SU(2)1 are the following three operators;

(TrP 2)ȧḃ = P a
b
ȧP b

a
ḃ, (TrPWα)ȧ = P a

b
ȧ(Wα)ba, TrWαWβ = (Wα)ba(Wβ)ba. (C.9)
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By using (C.8), we notice that the third operator can be rewritten as

TrWαWβ =
1

2
εαβTrW γWγ , (C.10)

which is the glueball superfield.

Next, we consider the operators also invariant under the second gauge group SU(2)2
by combining the fields q, w, and the operators in (C.9). Here, (wα)ȧḃ and (TrP 2)ȧċ =

(TrP 2)ȧḃεḃċ are in the adjoint representation while qȧ
I and (TrPWα)ȧ are fundamental

representation. Gauge invariant operators are either “loop type operators”, which are

trace operators of adjoint superfields, or “linear type operators”, which are made up of

several adjoint superfields with two fundamental superfields at both end points.

We begin with the loop type operators. As the chiral ring relation (C.8) is also appli-

cable for the field strength wα of the SU(2)2 gauge group, the operators with more than

or equal to two field strength wα is only the glueball superfield trwαwα.

In general, the square of adjoint fields X = σiXi of a SU(2) gauge group can be

rewritten as

X ȧ
ḃ
X ḃ

ċ = tr(X2)δȧ
ċ. (C.11)

It indicates that when we contract one set of the indices of two X = (TrP 2)ȧ
ḃ
, the other

set of indices are also contracted, which results in the operator

P 4 ≡ (TrP 2)ȧ
ḃ
(TrP 2)ḃȧ. (C.12)

Thus, the independent chiral operator more than or equal to two (TrP 2)ȧ
ḃ

is only this P 4.

From the discussion above, we find that the independent gauge invariant chiral op-

erators include at most two (TrP 2)ȧ
ḃ

and (wα)ȧ
ḃ

in total. The candidates of loop type

operators are as follows:

tr (ww) , tr
(

w(TrP 2)
)

, tr
(

(TrP 2)(TrP 2)
)

, (C.13)

where “tr” is the trace of the second gauge group SU(2)2.

We go on to the linear type operators. When they include field strength wα, one

of the gauge indices of wα must be contracted to a combination of fields which is in the

fundamental representation as a whole. Taking into account that (C.1) is available also for

a composite operator φ, we notice that such operators vanish in the chiral ring. Together

with the discussion just below (C.11), we notice that the linear type operators include at

most one TrP 2 and two operators in the fundamental representation. Thus, the candidates

of the linear type operators are as follows:

(qI)(qJ), (qI)(TrP 2)(qJ), (qI)(TrPWα), (qI)(TrP 2)(TrPWα),

(TrPWα)(TrPWβ), (TrPWα)(TrP 2)(TrPWβ), (C.14)

where the gauge indices of SU(2)2 are contracted properly.
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In the following, we show that the last two operators in (C.14) actually decompose or

vanish in the classical chiral ring. By multiplying W d
a to (C.6), and by symmetrizing Y

and Z, we show that

Tr(XY ZW ) + Tr(XZY W ) = 2Tr(Y Z) × Tr(WX) (C.15)

Applying this identity to the fifth operator in (C.14), we obtain

(TrPWα)ȧε
ȧḃ

(TrPWβ)ḃ = −
1

2
ε
ȧḃ

(

(TrPWαPWβ)ȧḃ + (TrP 2WαWβ)ȧḃ
)

. (C.16)

By using (C.3) to the first term of the right hand side of this equality, we obtain

(TrPWα)ȧε
ȧḃ

(TrPWβ)ḃ = −ε
ȧḃ

(TrP 2WαWβ)ȧḃ +
1

2
ε
ȧḃ

(wα)ḃċ(TrP 2Wβ)ȧċ. (C.17)

The equation (C.8) indicates that the first term of this equality is decomposed into the

product of the glueball Tr(W αWα) and εȧḃ(TrP 2)ȧḃ , where εȧḃ(TrP 2)ȧḃ actually vanishes

taking into account the symmetry of the indices. We notice that the second term also de-

compose into the glueball Tr(wαwα) and ε
ȧḃ

(TrPP )ȧḃ by using the chiral ring relation (C.7).

Thus, the operator (TrPWα)(TrPWβ) in (C.14) vanishes identically in the classical chi-

ral ring. Parallel discussion is possible for the last operator in (C.14), and we show that

this operator decompose into the product of P 4 and a linear combination of two kinds of

glueball superfield Tr(wαwα) and Tr(W αWα)

So far, we have not imposed the equations of motion:

−2

(

1

m1
+

1

m2

)

P b
a
ḃε

ḃċ
P c

d
ċP d

c
ḋε

ḋȧ
−

2

m2
qḃ
Iεḃȧ

P b
a
ċε

ċḋ
qḋ
I = 0, (C.18)

−
2

m2
ε
ȧḃ

P a
b
ḃP b

a
ċε

ċḋ
qḋ
I −

2

m2
ε
ȧḃ

qḃ
Jqċ

Jε
ċḋ

qḋ
I = 0, (C.19)

which we write again for convenience. By using the first equation of motion (C.18), we

show that unless m1 + m2 = 0, the last operator P 4 in (C.13) is proportional to the the

second operator (qI)(TrP 2)(qI) in (C.14), whose flavor indices are contracted:

P 4 = −
m1

m1 + m2
(qI)(TrP 2)(qI). (C.20)

The second equation of motion (C.19) indicates that the last operator (qI)(TrP 2)(qJ)

in (C.14) decomposes to the product of meson operator (qI)(qJ):

(qI)(TrP 2)(qJ ) = −MIKMKJ . (C.21)

From the discussion in this appendix, we find that the independent gauge invariant

operators in the classical chiral ring are (4.31)–(4.35).
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